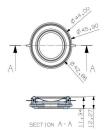


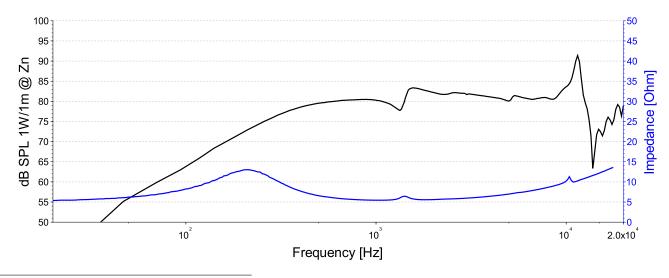
TwooferTM 32mm


Date: 2015-03-10

Rev.: 01

Product Description, Mechanical Drawing

The TwooferTM 32mm is an efficient full bandwidth transducer with the ability to reproduce both high (tweeter) and low (woofer) frequencies from a small diameter (diaphragm diameter=32mm) speaker. The diaphragm of the speaker can communicate through central motor opening to passive radiator, embedded in enclosure to extend loudspeaker system bass performance. Typical applications: pocket-size portable devices, flat panel loudspeaker arrays.



Specifications ¹

Nominal Impedance, Z_n	[Ohm]	6.0
Minimum Impedance, Z_{min}	[Ohm]	5.0
Long-term maximum power ² , P	[W]	8.0
Nominal Sensitivity 3 , L_{nom}	[dB]	81.5
Frequency Range (dB SPL -10dB) ⁴	[Hz]	160 - 13500
Frequency Range (dB SPL +/-3dB) ⁵	[Hz]	350 - 10500
Maximum Linear Excursion 6 , X_{max10}	[mm]	0.8
Maximum Excursion 7 , X_{mech}	[mm]	2.0
Transducer Height, h	[mm]	12.3
Transducer Diameter, d	[mm]	45.9
Transducer Mass, m	[g]	49
Ferrofluid	[-]	Yes

Resonance Frequency , f_s	[Hz]	180
DC Resistance, Re	[Ohm]	5.0
Inductance , Le	[mH]	0.1
Moving Mass, M_{ms}	[g]	1.5
Suspension Stiffness, K_{ms}	[N/mm]	2.3
Force Factor, Bl	[N/A]	3.8
Motor Efficiency Factor, $(Bl)^2/R_e$	$[N^2/W]$	2.9
Mechanical Q factor, Q_{ms}	[-]	1.1
Electrical Q factor, Q_{es}	[-]	0.7
Total Q factor, Q_{ts}	[-]	0.42
Effective Volume, V_{as}	[1]	0.06
Effective Piston Area, S_D	$[\mathrm{cm}^2]$	10.2

On-Axis Frequency Response ⁸, Impedance

Due to continuing product improvement, the features and the design are subject to change without notice.

² IEC 60268-5:2003 + A1:2007, pink noise $f \ge fs$, power calculated on nominal impedance, loudspeaker operated in free air.

³ SPL at 1m for 1W @ Z_n based on TS-Parameters

 $^{^4}$ $f(SPL_{nom} - 10dB)$

 $f(SPL_{nom} + / - 3dB)$

 $^{^6}$ IEC 62458:2010, harmonic and intermodulation distortion < 10%

 $^{^{7}}$ IEC 62458:2010, maximum mechanical voice coil displacement

⁸ Half-space frequency response is based on transducer vibration data