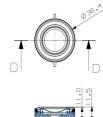
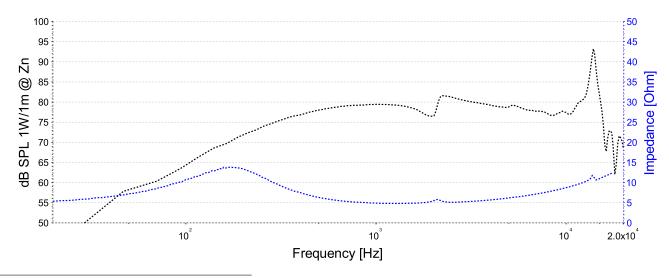
TwooferTM 25mm Parts Number SMM25-125-4-17k


Date: 2015-09-01

Rev.: 03

Product Description, Mechanical Drawing

The TwooferTM 25mm is an efficient full bandwidth transducer with the ability to reproduce both high (tweeter) and low (woofer) frequencies from a small diameter (diaphragm diameter=25mm) speaker. The diaphragm of the speaker can communicate through central motor opening to passive radiator, embedded in enclosure to extend loudspeaker system bass performance. Typical applications: pocket-size portable devices, flat panel loudspeaker arrays.



Specifications ¹

Nominal Impedance, Z_n	[Ohm]	6.0
Minimum Impedance, Z_{min}	[Ohm]	4.8
Long-term maximum power ² , P	[W]	4.0
Nominal Sensitivity 3 , L_{nom}	[dB]	80.5
Frequency Range (dB SPL -10dB) ⁴	[Hz]	160 - 16000
Frequency Range (dB SPL +/-3dB) ⁵	[Hz]	400 - 13000
Maximum Linear Excursion 6 , X_{max10}	[mm]	0.6
Maximum Excursion 7 , X_{mech}	[mm]	1.8
Transducer Height, h	[mm]	11.5
Transducer Diameter, d	[mm]	36.4
Transducer Mass, m	[g]	36
Ferrofluid	[-]	Yes

Resonance Frequency , f_s	[Hz]	180
DC Resistance, Re	[Ohm]	4.5
Inductance , Le	[mH]	0.09
Moving Mass, M_{ms}	[g]	1.1
Suspension Stiffness, K_{ms}	[N/mm]	1.1
Force Factor, Bl	[N/A]	3.5
Motor Efficiency Factor, $(Bl)^2/R_e$	$[N^2/W]$	2.7
Mechanical Q factor, Q_{ms}	[-]	0.86
Electrical Q factor, Q_{es}	[-]	0.42
Total Q factor, Q_{ts}	[-]	0.28
Effective Volume, V_{as}	[l]	0.06
Effective Piston Area, S_D	$[\mathrm{cm}^2]$	6.6

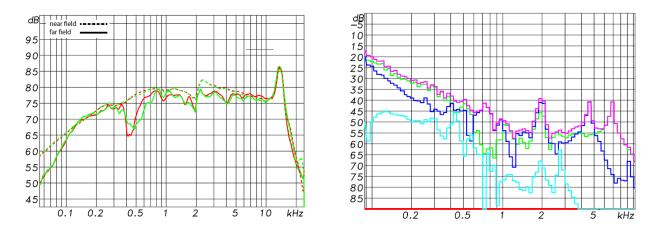
On-Axis Frequency Response ⁸, Impedance

Due to continuing product improvement, the features and the design are subject to change without notice.

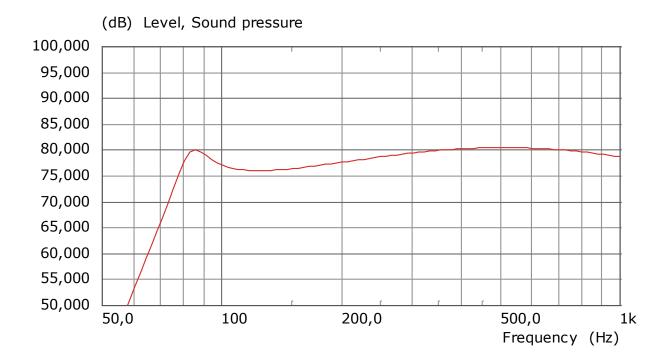
² IEC 60268-5:2003 + A1:2007, pink noise $f \ge fs$, power calculated on nominal impedance, loudspeaker operated in free air.

³ SPL at 1m for 1W @ \mathbb{Z}_n based on TS-Parameters

 $^{^{4}}$ $f(SPL_{nom} - 10dB)$


 $f(SPL_{nom} + / - 3dB)$

 $^{^6}$ IEC 62458:2010, harmonic and intermodulation distortion < 10%


⁷ IEC 62458:2010, maximum mechanical voice coil displacement

⁸ Half-space frequency response is based on transducer vibration data

On-Axis Frequency Response 9, THD 10

On-Axis System Frequency Response 11

⁹ IEC 60268-5:2003 + A1:2007, measurement shows SPL of two different TwooferTM 25mm transducers in far- and near field - single transducer mounted in standard baffle; SPL dip at 450Hz far-field measurement (1W/1m) is caused by diffraction of standard baffle (compare with near field measurement at 1W/10cm); nominal sensitivity in far-field $L_{nom} \approx 77.5$ dB/1W/1m; SPL peak at f≈14kHz is caused by cone break-up.

¹⁰ THD measurement in near field 1W/10cm, total harmonic distortion - violet, second harmonics - green, third harmonics - blue, fifth harmonics - cyan

 $^{^{11}}$ BEM infinite baffle simulation; system comprises one Twoofer $^{\rm TM}$ 25mm dB SPL 1W/1m @ Zn + one passive radiator; passive radiator data: $S_P=3*S_D, M_{mp}=9g, K_{mp}=0.9N/mm;$ box volume: $V_{box}=0.35l$